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These systems employ artificial intelligence to distinguish grain from
plant material, classify grain particles by size, and calculate the CSPS,
which is then displayed to the operator. With this immediate feedback,
operators can continuously adjust cracker settings to match harvesting
conditions, ensuring optimal silage quality. Beyond improving feed efficiency,
this technology also enhances documentation for future management
decisions, while helping increase throughput, lower wear, and reduce
fuel consumption.







What is CSPS?
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“One-unit change in fecal starch equals the energy equivalent for 0.72 pounds of milk production.”

Braman and John Kurtz, 2012
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How do we manipulate CSPS?
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% Starch passing 4.75 mm sieve

0 30 120
Ensiling time, d

Table 1. Least squares means and SE for the effect of fermentation time on IVSD, NDFd30, and CSPS.
Fermentation Timepoint, d

Forage Metric 0 45 90 135 SE P-value
IVSD, % starch 58.24 63.2° 67.2° 69.42 1.7 < 0.001
NDFd30, % NDFom 57.4 57.1 57.0 56.8 0.8 0.23
CSPS, % starch 60.3* 60.08A 59.38A 58.48C 5.9 0.07

abcdMeans with different superscripts differ (P < 0.05).
AB.CMeans with different superscripts differ (P < 0.10).

ADSA Abstract, Ferraretto, 2015; 2025 ISC, J. Lawrence




Are we doing a good job?



CSPS has improved over 10 years
(n = 16,879)
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Can we optically measure CSPS?



(b) Sample from the plot W|th hlghest CSPS (89. 3%)

Yamada et al., 2025, Preprint
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(e) 151617 model.

* Unsorted kernels, RGB images

« Strong correlation (r?= 0.78) between R-FCN

predictions and CSPS

Sensors 2019, 19(16), 3506

KPS (Annotations)

Linear Regression KPS 2015

Linear Regression KPS 2016
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Sample number

Lemcke et al., 2025

SEL was 6.7 and 6.9
for Labs A and B.



Yamada et al., 2025, Preprint

Reference Corn Silage Prccessing Score (%)

Random Forest Fusion
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This is a big step forward!

So we're done? Not quite:

e In my opinion the lab assay is too noisy for precise control of CSPS

e We don't have enough information to understand the cost of attaining a one point
change in CSPS

e Many of these systems use CVML and can be easily overfit to the data - it will
take time to understand the limitations and improve the models

Remaining Challenges



Questions?

Matthew Digman
digman@wisc.edu




